Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant

نویسندگان

  • Anna U. Bielinska
  • Jessica J. O’Konek
  • Katarzyna W. Janczak
  • James R. Baker
چکیده

TH2-biased immune responses are associated with inadequate protection against some pathogens and with cancer, colitis, asthma and allergy. Since most currently used vaccine adjuvants induce a TH2-biased response, this has led to interest in developing adjuvants capable of activating TH1 immunity and modulating existing TH2 responses. Immunotherapies to shift immune responses from TH2 to TH1 have generally required prolonged immunization protocols and have not induced effective TH1 responses. We have demonstrated that nanoscale emulsions (NE), a novel mucosal adjuvant, induce robust IgA and IgG antibody responses and TH1/TH17 cellular immunity resulting in protection against a variety of respiratory and mucosal infections. Because intranasal (i.n.) delivery of NE adjuvant consistently induces TH1/TH17 biased responses, we hypothesized that NE could be used as a therapeutic vaccine to redirect existing TH2 polarized immunity towards a more balanced TH1/TH2 profile. To test this, a TH2 immune response was established by intramuscular immunization of mice with alum-adjuvanted hepatitis B surface antigen (HBs), followed by a single subsequent i.n. immunization with NE-HBs. These animals exhibited increased TH1 associated immune responses and IL-17, and decreased TH2 cytokines (IL-4 and IL-5) and IgG1. NE immunization induced regulatory T cells and IL-10, and IL-10 was required for the suppression of TH2 immunity. These data demonstrate that NE-based vaccines can modulate existing TH2 immune responses to promote TH1/TH17 immunity and suggest the potential therapeutic use of NE vaccines for diseases associated with TH2 immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid

Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...

متن کامل

Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid

Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...

متن کامل

Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant act...

متن کامل

Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine

The Gram-positive bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA) can cause infections in the bloodstream, endocardial tissue, respiratory tract, culture-confirmed skin, or soft tissue. There are currently no effective vaccines, and none are expected to become available in the near future. An effective vaccine capable of eliciting both systemic and mucosal immune responses...

متن کامل

A novel, killed-virus nasal vaccinia virus vaccine.

Live-virus vaccines for smallpox are effective but have risks that are no longer acceptable for routine use in populations at minimal risk of infection. We have developed a mucosal, killed-vaccinia virus (VV) vaccine based on antimicrobial nanoemulsion (NE) of soybean oil and detergent. Incubation of VV with 10% NE for at least 60 min causes the complete disruption and inactivation of VV. Simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2016